Study of the Corrosion Resistance of Ni/CeO2 Composite Coatings Electrodeposited on Carbon Steel in Hydrochloric Acid

نویسنده

  • A. Samide
چکیده

The phase formation of Ni-Ce composites onto a carbon steel electrode was investigated using electrochemical deposition. The anticorrosive properties of composite coating in 0.1 mol L HCl solution were studied by Tafel polarization and electrochemical impedance spectroscopy (EIS). Incorporation of CeO2 particles into the Ni matrices was found to improve corrosion resistance of pure Ni coatings. The values of protection efficiency obtained from Tafel polarization and EIS measurements are in good agreement, reaching a maximum value of 57 %, at 0.1 g L CeO2 containing electro-deposition bath. The surface morphologies and compositions of coatings were studied using scanning electron microscopy with Energy Dispersive X-ray Spectroscopy (SEM/EDS). In case of electro-depositions from solution containing CeO2 (Fig. 3c) the layer uniformity is more apparent and the feature of a metalic nucleation, forming a matrix in which are embedded certain oxide particle is relatively nuanced.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of the Carbon Nanotube Content on the Corrosion Behaviour of Ni-P-CNT Composite Coating

In the present study, Ni-P-CNT composite coating was successfully fabricated via electroless plating. Scanning electron microscopy (SEM) was used to characterize the coatings. The effect of CNTs concentration in the bath on its content in the composite coatings was studied. Furthermore, the corrosion behaviour of the coatings with different contents of CNTs was evaluated using Tafel polarizatio...

متن کامل

Wear behavior of carbon steel electrodeposited by nanocrystalline Ni–W coating

Ni-W coatings, compared to pure nanocrystalline Ni, exhibit higher hardness and wear resistance. In some cases, these coatings are considered as environmental friendly alternatives for hard chromium coating. Till now, most of Ni-W coatings have been produced by direct current electrodeposition from alkaline baths. In this study square pulse current was used for deposition of Ni-W precipitates f...

متن کامل

STUDY OF CHARACTERIZATION AND CORROSION RESISTANCE OF NIP/NANO-DIAMOND ELECTROLESS COMPOSITE DEPOSITION

Ni-P Electroless coatings provide appropriate resistance to wear and corrosion. Co-deposition of particles between layers can improve their properties, especially general corrosion and erosion-corrosion behavior by means of nano diamond as reinforcing particles. In this study Ni-P/nano diamond composite deposition were deposited on steel substrate. Structure of the coatings and corrosion r...

متن کامل

اثر غلظت ذرات Al2O3 بر خواص پوشش‌های کامپوزیتی Ni-Mo-Al2O3 تولیدی به‌روش رسوب‌دهی الکتریکی

In this research, Ni-Mo-Al2O3 composite coatings were electro-deposited on the mild carbon steel in a citrate bath containing micro- sized Al2O3 particles. Afterward, the effect of the particle concentration in the electrolyte bath (ranging from 0 g/L to 30 g/L) on the microstructure, microhardness, and corrosion performance was evaluated. To investigate the microstructural changes and the surf...

متن کامل

Effect of current density on the microstructure and polarization resistance of Ni-P-TiO2-ZrO2 composite coating

Composite coatings with nickel matrix and ceramic reinforcement particles have high ability to improve surface properties, such as good corrosion and abrasion resistance. In this study, Ni-P composite coating was coated with ZrO2 and TiO2 ceramic particles on the AISI 316 steel substrate through direct current plating method. The effect of the current densities of 20, 30, 40 and 50 mA/cm2 on th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011